首页> 外文OA文献 >A novel tomographic reconstruction method based on the robust Student’s t function for suppressing data outliers
【2h】

A novel tomographic reconstruction method based on the robust Student’s t function for suppressing data outliers

机译:一种基于鲁棒student t函数抑制数据异常值的新型层析成像重建方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Regularized iterative reconstruction methods in computed tomography can be effective when reconstructing from mildly inaccurate undersampled measurements. These approaches will fail, however, when more prominent dataerrors, or outliers, are present. These outliers are associated with various inaccuracies of the acquisition process: defective pixels or miscalibrated camerasensors, scattering, missing angles, etc. To account for such large outliers, robust data misfit functions, such as the generalized Huber function, have beenapplied successfully in the past. In conjunction with regularization techniques, these methods can overcome problems with both limited data and outliers. Thispaper proposes a novel reconstruction approach using a robust data fitting term which is based on the Student’s t distribution. This misfit promises to beeven more robust than the Huber misfit as it assigns a smaller penalty to large outliers. We include the total variation regularization term and automaticestimation of a scaling parameter that appears in the Student’s t function. We demonstrate the effectiveness of the technique by using a realistic synthetic phantom and also apply it to a real neutron dataset.
机译:从轻度不准确的欠采样测量值进行重建时,计算机断层扫描中的正则化迭代重建方法可能会非常有效。但是,如果存在更突出的数据错误或异常值,这些方法将失败。这些离群值与采集过程的各种不准确度有关:像素缺陷或相机传感器校准错误,散射,角度丢失等。为解决如此大的离群值,过去已成功应用了鲁棒的数据失配函数,例如广义的Huber函数。 。结合正则化技术,这些方法可以克服数据有限和离群值的问题。本文提出了一种新颖的重建方法,该方法使用了基于学生t分布的健壮数据拟合项。这种失配有望比Huber失配更具鲁棒性,因为它给较大的异常值分配了较小的惩罚。我们包括总变化正则项和出现在Student t函数中的缩放参数的自动估计。我们通过使用逼真的合成体模来证明该技术的有效性,并将其应用于真实的中子数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号